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Abstract Manning's roughness coefficient, n, is used to describe channel roughness, and is a widely sought-
after key parameter for estimating and predicting flood propagation. Due to its control of flow velocity and shear
stress, n is critical for modeling timing of floods and pollutants, aquatic ecosystem health, infrastructural safety,
and so on. While alternative formulations exist, open-channel 7 is typically regarded as temporally constant,
determined from lookup tables or calibration, and its spatiotemporal variability was never examined holistically
at large scales. Here, we developed and analyzed a continental-scale n dataset (along with alternative
formulations) calculated from observed velocity, slope, and hydraulic radius in 200,000 surveys conducted over
5,000 U.S. sites. These large, diverse observations allowed training of a Random Forest (RF) model capable of
predicting n (or alternative parameters) at high accuracy (Nash Sutcliffe model efficiency >0.7) in space and
time. We show that predictable time variability explains a large fraction (~35%) of n variance compared to
spatial variability (50%). While exceptions abound, n is generally lower and more stable under higher
streamflow conditions. Other factorial influences on n including land cover, sinuosity, and particle sizes largely
agree with conventional intuition. Accounting for temporal variability in n could lead to substantially larger
(45% at the median site) estimated flow velocities under high-flow conditions or lower (44%) velocities under
low-flow conditions. Habitual exclusion of n temporal dynamics means flood peaks could arrive days before
model-predicted flood waves, and peak magnitude estimation might also be erroneous. We therefore offer a
model of great practical utility.

Plain Language Summary Stream channel roughness is a critical variable for many river-related
applications including modeling of flood inundation extent, pollutant transport, stormwater management,
aquatic ecosystem health, infrastructural safety, and so on, and is traditionally assumed as being constant over
time. Here we estimate channel roughness using in-stream measurements from thousands of sites across the
United States and show that its temporal dependence can be substantial. Our machine learning model can serve
as a valuable and state-of-the-art prediction of roughness, providing great practical value and a holistic view of
the spatiotemporal variability of roughness. Moreover, the longstanding exclusion of temporal dynamics means
that flood peaks could arrive days before model-predicted flood waves, and peak magnitude estimation might
also be inaccurate. Raising awareness of this issue can advance our understanding of channel flows, improve the
accuracy of modeling, and save lives.

1. Introduction

Stream channel roughness, represented by Manning's roughness coefficient (n) (Manning et al., 1890), describes
the frictional resistance exerted by channel beds, banks, and floodplains to streamflow, and is widely sought-after
as a key parameter for estimating and predicting river flow and making river management decisions (Arcement &
Schneider, 1989; Dingman & Sharma, 1997; Einstein & Barbarossa, 1952; Mabbott & Fryirs, 2022; Singh, 2017).
Given the same flow rate and channel geometries, channels with larger n can manifest larger flow depths, slower
flows, and more inundation in the surrounding floodplains (Allen et al., 2018; Attari et al., 2021; Heldmyer
et al., 2022; Hu et al., 2021; Ji et al., 2019; H.-Y. Li et al., 2015; Lin et al., 2019; Shen et al., 2016; Waliser &
Guan, 2017; Yamazaki et al., 2011), while those with low n values facilitate faster flood convergence
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downstream. Due to its relationship with flow velocity and shear stress, 7 is critical for modeling flood timing and
other applications (Hilker et al., 2009; Kundzewicz et al., 2018; Rowinski et al., 2022). For example, in river
hydrology, n plays a crucial role in modeling the timing of flood peaks and inundation extent, or inverse esti-
mation of discharge (Durand et al., 2016) with biases in n leading to large prediction errors (Ardighoglu &
Kuriqi, 2019; Azamathulla & Jarrett, 2013; Ye et al., 2018). In water quality modeling, river flow speed is critical
to calculating pollutant transport. In erosion control and fluvial geomorphology, » is an important control for bank
and soil erosion (Langendoen & Simon, 2008). In infrastructural engineering design, n influences the estimation
of flow depth (Arcement, 1989) and thus the design criteria of, for example, bridges and culverts (Richardson &
Davis, 2001; Yaryan Hall & Bledsoe, 2023). In aquatic ecosystem management, Manning's # is used to design
plans for river restoration (Clilverd et al., 2016) and model suitable fish habitat (Fitz et al., 1996; Gillenwater
et al., 2006). Therefore, considerable practical and scientific value exists in the robust estimation of n, and there
are potential costs of uncertainty in estimation of 7.

Until now, limitations in the scale of available datasets have created knowledge gaps in understanding how much
and how fast n varies in space and time, and to what extent it is predictable as a function of in-stream and
macroscopic environmental factors (Addy & Wilkinson, 2019; Green, 2005; Pradhan & Khatua, 2018a, 2018b;
Zhu et al., 2020). In standard engineering practice, roughness is overwhelmingly either determined from pub-
lished tables summarizing data on land cover, stream order, geomorphology, riverbed materials, vegetation, and
so on (where the raw data for such look-up tables are rarely available) or calibrated through matching simulations
of flow velocity or volumetric discharge to observations (Arcement, 1989; Rajib et al., 2020). Due to the need for
local investigation or calibration, either approach would preclude the estimation of n at large scales. In research, it
is understood that channel roughness can be governed by multiple environmental factors including the type and
size of the river substrate, channel geometries, flow conditions, sediment characteristics, human modifications,
aquatic and riparian vegetation, and plant type and density (Addy & Wilkinson, 2019; Brebbia, 2011; Dja-
jadi, 2009; Jarrett, 1985; Nicosia & Ferro, 2023; Salleh et al., 2023; Zhu et al., 2020). In meandering channels, the
irregularity of channel geometry and sinuosity (Figure S1 in Supporting Information S1) can also play a role in
determining n (James, 1994; Naghavi et al., 2023). Nevertheless, past studies have mostly focused on a certain
type of stream or a limited number of sites (Bhusal et al., 2022; Mehedi et al., 2022; Mohanta et al., 2018;
Roushangar & Shahnazi, 2021; Yang et al., 2021), and a large dataset is lacking to enable large-scale Machine
Learning (ML) studies of n that would provide holistic and systematic perspectives. Since all these channel
properties covary, we hypothesize that catchment area or discharge as integrative signals, along with local
environmental predictors, could present a pathway toward better determination of » at large scales.

In current practices and guidelines, n is predominantly viewed as a temporally constant (but often spatially
varying) parameter in the mindsets of scientists and engineers (Garrote Revilla et al., 2021; Mangukiya &
Yadav, 2022; Vashist & Singh, 2022). Table S1 in Supporting Information S1 provides some example values.
Manning's formula with the uniform flow assumption (Equation 1 in Methods) is the most commonly used
(Jarrett, 1985; Y. Li et al., 2014; Noarayanan et al., 2012). Although the use of “hydraulic radius” (flow area
divided by the wetted perimeter, often approximated by river depth for wide rivers) in Manning's equation is
intended to, in theory, remove the dependence of n on discharge, it has not been shown that such discharge-
independence truly holds. In fact, some field studies, especially those from the geomorphological community,
recognize that Manning's roughness is a function of discharge and that flow resistance tends to be overestimated at
high flows (Chow, 1959; Ferguson, 2007, 2010; Ye et al., 2018). Some studies have questioned the validity of the
Manning's formula, with alternatives such as Chezy or Keulegan (1938) formulations proposed to address some of
the discharge dependency issues (Ferguson, 2010). However, the empirical datasets remain small in number and,
more importantly, it is unclear how to leverage the sampled dynamical relationship for predictive purposes. Since
flow velocity is inversely proportional to n, if temporal variability is substantial then current models risk
significantly miscalculating velocity for extremely high or low flows.

We utilized the large United States Geological Survey (USGS) HY DRoacoustic dataset which supports the Surface
Water Oceanographic Topography (HYDRoSWOT) satellite mission (Canova et al., 2016), to provide new in-
sights into the n distribution at large spatiotemporal scales. Compiled from USGS Acoustic Doppler Current
Profiler (ADCP) measurements, HYDRoSWOT contains, among other attributes, discharge, flow velocity, and
flow depths for over 200,000 observations from thousands of sites across the United States. We derived n using
Manning's equation and verified its physical significance utilizing a set of hypothesis tests (see Methods), analyzed
its spatiotemporal distributions, and explored its temporal variability. We investigated the following questions.
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Table 1
Descriptions of Data Sources
Data Source Data type Coverage
Velocity, channel width, channel depth, discharge USGS HYDRoSWOT (Canova et al., 2016) Point CONUS
Drainage area, stream order, slope, mean elevation National Hydrography Dataset (U.S. Geological Survey, 2023) Polylines CONUS
Land cover, sinuosity, stream density Wieczorek et al., 2018 (Schwarz et al., 2018b) Polylines CONUS
Channel bed particle size (Dsy) Abeshu et al., 2022 (Abeshu et al., 2022) Polylines CONUS
NDVI MOD13Q1 V6.1 (Didan, 2015) Raster Global/250 m
Sand, clay, silt Hengl et al., 2018 (Hengl, 2018) Raster Global/250 m
Aridity index Trabucco & Zomer, 2019 (Global Aridity Index and Potential Raster Global/250 m

Evapotranspiration (ETO0) Climate Database V2, 2019)

Q1: Given a comprehensive dataset of continental-scale Manning's roughness coefficient n (and other flow
resistance parameters), can n be well predicted by machine learning methods with integrative envi-
ronmental inputs such as upstream catchment area, along with local environmental conditions, and if so,
which attributes are more important predictors and does n have significant geographic patterns?

Q2: At the continental scale, how much variance in 7 is due to temporal variation in discharge, in comparison
to its spatial variability, and how well can n be predicted if discharge is used as an input?

Q3: How many errors in flood peak modeling will be encountered if the temporal variation of n is not
considered?

2. Materials and Methods
2.1. Datasets

The raw data used in this work (Table 1 in Supporting Information S1) were collected from many global scale
research initiatives (Canova et al., 2016; Google Earth Engine, 2023; NHD Plus - NHDPlus Version 2, 2023;
Schwarz et al., 2018a). The United States Geological Survey (USGS) compiled HYDRoSWOT, the HYDRo-
acoustic dataset in support of the Surface Water Oceanographic Topography satellite mission (Canova
et al., 2016), which contains over 200,000 Acoustic Doppler Current Profiler (ADCP) surveys from thousands of
sites across the United States. ADCP uses sound waves to measure the speed and direction of currents throughout
the water column. Moving-boat ADCPs can produce two-dimensional velocity grids (all three directional velocity
components) as well as depth profiles upon completion of a transect. Taking the cross product of the horizontal
velocity vectors and the boat's track and integrating over the transect can produce discharge. ADCP surveys can
miss a portion of flow above the sensors and portions of the flow close to the banks, but the flows in these portions
can be estimated. In HYDRoSWOT, the transect-integrated discharge, mean velocity, maximum depth, and
measured width (length of the transect, not necessarily the true river width) are reported. Mean depths were
reported only about one third of the time. There are 5,228 total sites, with 67,433 observations. Median char-
acteristics of the sites in the dataset include channel width (28.4 m), maximum depth (1.22 m), drainage area
(4.55 km?), and mean velocity (0.44 m/s).

The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on the Terra and Aqua satellite
missions provides a product (MOD13Q1 V6.1) consisting of Normalized Difference Vegetation Index (NDVI)
information, which is referred to as the continuity index to the existing National Oceanic and Atmospheric
Administration-Advanced Very High-Resolution Radiometer (NOAA-AVHRR) derived NDVI (Didan, 2015).
Sand and clay content data were obtained as percentages (kg/kg) at 6 standard depths (0, 10, 30, 60, 100, and
200 cm) (Hengl, 2018), but only depths of 0 and 10 cm were considered for this study. Aridity Index (AI)
represents the ratio between precipitation and evapotranspiration (aggregated on an annual basis) and was ob-
tained from the Global Aridity Index Version 2 dataset (Global Aridity Index and Potential Evapotranspiration
(ETO) Climate Database V2, 2019). This dataset provides high-resolution global raster climate data related to
evapotranspiration processes and rainfall deficit for potential vegetative growth. Slope was determined using the
National Hydrography Dataset version 2 (NHDPlus V2) and averaged for each reach. Therefore, slope was treated
as a temporally constant parameter. This assumption is commonly employed in large-scale hydrological and
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hydraulic modeling due to the relatively stable nature of physical riverbed features, including slope, over short to
medium time scales. However, we acknowledge the potential limitations of assuming a time-constant slope.
Specifically, in regions with minimal elevation change, such as coastal rivers, the water surface slope is a critical
factor influencing flow velocity. Also, this assumption may introduce errors in modeling areas where backwater
flows significantly alter hydraulic conditions. In these contexts, variations in water level due to tidal influences,
storm surge, or anthropogenic changes can significantly alter the effective slope and, consequently, the flow
dynamics. The assumption of a time-constant slope in such settings could introduce inaccuracies in flood
modeling, potentially specifically affecting the precision of predictions in coastal rivers.

Median streambed particle size (D50) across the rivers in the conterminous United States (CONUS) was also used
as an input variable (Abeshu et al., 2022). All the input datasets and their sources are listed in Table 1.

2.2. Manning's n Calculation

The channel roughness coefficient () is derived from Manning's equation for uniform flow in open channels

(Singh, 2017):

kR2/3S1/2
n=———
\'%

)

where R is the hydraulic radius (m), v is the stream velocity (m/s), S is channel slope (m/m), and & is a unit
conversion factor that is 1.0 if using v and R in meters, and 1.49 if using feet, leading to the same n value under
different unit systems.

To apply Equation 1, R and v were obtained from the transect-average values in the HYDRoSWOT dataset ADCP
surveys and S was derived from the NHDPIlus V2 dataset (reach averaged). R, v, and thus »n are different for
different sampling locations as well as time points, but S is only considered site-specific and not time-dependent.

Assuming the channel cross-sectional geometry to be rectangular, R was approximated by the observed maximum
depth. We used this value for R for several reasons. First, the majority of the rivers in the dataset are wider than
10 m. Second, during our quality control check, we found that the width value in HYDRoSWOT is deemed less
reliable than depth as the surveys may not cover the entire cross section (perhaps due to navigational difficulties or
transects not perpendicular to flow), for example, we found max-Q width to be sometimes smaller than that min-Q
width, an issue which never occurred with depth. Third, to examine the impact of this assumption on our con-
clusions, we ran sensitivity tests where either triangular or trapezoidal geometry (bottom width was then solved
from flow area) was assumed, and we calculated metrics that quantified the impacts of n variability on estimated
velocity (see Quantifying the Implications section below). We found the geometric assumption to have little
impact on this variability metric or the main conclusions of the paper, as shown in Figure S4 in Supporting
Information S1. Finally, our hypothesis testing and analysis all suggest that the n values we calculated have
physical significance.

2.3. Input Feature Preparation

Exploratory Data Analysis was performed to obtain insights on the dataset by summarizing its main attributes. We
primarily did this to trim the outliers and decide on the transformation function to increase the normality and
bivariate correlation of the variables. Based on previous literature and guidelines for the selection of Manning's n,
we trimmed the n values to be less than 0.33 (Arcement, 1989). Feature Engineering in this work involved data
transformation, data standardization, and splitting the dataset into training/testing sets. A few input variables (e.g.,
land cover, soil contents, sinuosity) were transformed using logarithmic functions to obtain the most suitable
format in order for the learning algorithm of the ML-based regressors to obtain the highest performance. In this
study, a tabular dataset was utilized to quantify the percentage of land cover classes within the conterminous
United States. This dataset leverages data from the 2011 National Land Cover Dataset (NLCD 2011) and
compiles the percentage of land cover classes into two distinct spatial components of the NHDPlus version 2
(NHDPIlusv?2) data suite (Homer et al., 2015). These components encompass (a) individual reach catchments and
(b) accumulated reach catchments upstream through the river network. The inclusion of a unique identifier,
COMID, facilitated the linking of this dataset to the NHDPlusv2 data suite. Similarly, information on flowline
reach sinuosity was compiled along the flowline NHDPlusv2 COMID data. Through the data standardization
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process, the values of the variables were rescaled and centered around their mean with a unit standard deviation.
The standardized variables were split into three portions: training (to train the model), validation (to improve the
performance of the models through hyperparameter tuning), and testing (to test/evaluate the model performance
with unseen data). Seventy percent of the dataset was used for training and the rest was used for validation (15%)
and testing (15%). To avoid information leakage, we excluded variables directly involved in calculating n in
Equation 1 from the inputs to our models. Selected contributing predictors along with the observed channel
roughness were used to train and test the models.

2.4. Machine Learning Model Development

A set of ML-based regressors was chosen for the predictive analysis (Figure S5 in Supporting Information S1),
including Random Forest (RF), Multi-layer Perceptron (MLP), Extreme Gradient Boosting (XGB), and K-
Nearest Neighbors (KNN). RF is an ensemble learning method for regression operated by constructing a
collection of multiple decision trees when training the model (Mehedi et al., 2022). An MLP is a fully connected
type of feed-forward neural network (Gaudart et al., 2004). XGB is a distributed gradient-boosted decision tree
ML algorithm. KNN is a non-parametric regression method that approximates the association between predictors
and the target variable by taking the average of the observations in a similar neighborhood based on a distance
function (Song et al., 2017). As the RF model exhibited the top performance among all other regressors with a
NSE of 0.7, it was selected for presentation of the results. A grid search cross-validation scheme was used to tune
the hyperparameters of the models, taking all the hyperparameter combinations exhaustively (Ippolito, 2022).
Spatial k-fold cross-validation was performed for the RF model to measure the model's transferability across
terrains (Figure S6 in Supporting Information S1). The entire study domain was clustered into 18 folds according
to hydrologic regions, as the spatial autocorrelation among the nearby locations may lead to bias and incorrect
model evaluation if the models are evaluated considering the entire study area (de Bruin et al., 2022; Hoffimann
et al., 2021). An illustration of the entire process of the k-fold cross-validation is presented in Figure S6 in
Supporting Information S1.

The relative feature importance of the predictors was studied by analyzing the Permutation Feature Importance
(PFI) technique in the computational domain (Mehedi et al., 2022; Mi et al., 2021). In PFI, the impact of shuffling
the values of a feature (e.g., NDVI) over the target variable (e.g., roughness coefficient) is quantified to observe
the response in the output variables due to the change in the input variables. The score of the error matrix (R?)
derived from the observed and predicted values of the channel roughness caused by shuffling the predictors
provides the score of relative feature importance. A partial dependence plot displays the minimal influence a
feature has on a ML model's outcome (Greenwell, 2017), and can demonstrate if a target and a feature have a
linear, monotonic, or more complex relationship. The partial dependence plots were calculated after fitting the RF
model.

2.5. Variance Decomposition and the Significance of Time Variability

To decompose the spatiotemporal variability of n, we calculated Sum-of-Squares Error (SSE) to quantify the
variability. SSE; is the sum of the squares of the residuals when using the mean 7 to predict n for a particular site:

SSE, = 3" > (n! - )’ )

where 7z; and T are, respectively, the mean of calculated n and total number of measurements at site s, n’ rep-
resents calculated n at time #, and m is the total number of sites. SSEg shows the RF performance with the original
spatiotemporally varying » as an input:

SSEge = > > (n' = RF(Q.. x,))’ 3)

SSE, denotes the total sum-of-squares of n for all the data, where 7 is the mean » of all data points:

SSEx = 3" S (nt — 1)’ (4)
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Table 2 We tested a null hypothesis that the time-dependent variation in n is not
Perturbation Experiments for Manning's Equation significant, and the model explains the variance between the discharge (Q)
Formula for n NSE Comments ..and n onl?/ because f)f the corre.latlon between Q and velf)cuy (v; velocity is
— involved in calculating » to train the ML models). To this end, we replaced
n = (1/v) R*S” 0.71

Experiments substituting median values for site-specific ones

n=(MnR*S" 0.43
n=>1MRPS 026
n=/V)R*S? 021

n=(/v)R*S" 0.18
n=(1/v) R*s” 0.02
n=(/v)R*S" 0.11
Control experiments with an altered formula
n’ =vR*S" 0.16
n"=vR*S" 0.09

Subset of sites with more than 40 data points (333 sites, totaling 24,881 data
points). X; and X, denotes alternate input sets with Q' replaced by Q
or 0, at a site.

mean

N = (ImR* §* 0.08

n=(1mR* " 0.21

Nomean = (IMR*S”*  0.59 X;: O replaced by Q,,,,,, at a site
Nomax = (MR*S”*  0.63 X,: Q' replaced by Q,,,. at a site

n= (1/v)R2/“ 5% 0.34  Predicting deviations from at-a-site mean n.

Note. We modified the terms of n and retrained random forest RF(X) models
to predict them. Static covariates were always included in inputs X and,
unless noted otherwise, the models had time-dependent discharge Q' in the
inputs. In all equations, v is the stream velocity (m/s), R is the hydraulic
radius (m), and S is the channel slope (m/m) for all data points (67,433 points
from 5,228 sites). Q represents stream volumetric discharge (m*/s). Nash—
Sutcliffe model efficiency coefficient (NSE) is the amount of variance
explained by the model, divided by the total variance. NSE values can be
interpreted similarly to R%. v and R are different for each site and each survey,
while S is different for each site. A bar over a variable indicates taking the

median of all data, and an underlined variable indicates the at-a-site median.

spatiotemporally-varying discharge, Q', in the input of RF model RF(Q’, x)
with at-a-site mean (mean of Q at each individual site) discharge, Q. In
addition, both spatiotemporally-varying R and v were replaced by the at-a-site
mean values to ignore their temporal variability. Model predictability due to
the changes is tabulated in Table 2.

2.6. Hypothesis Testing

Hypothesis testing was performed to observe the physical significance of
n. The null hypothesis (H,;) stated that the measurements used in
calculating n were irrelevant to the actual n values. The ML model could
therefore only obtain high performance in estimating the calculated n if
the v and Q were matched at individual sites, meaning their correlation
would be the only reason we found estimative (predictive) power from
the ML models. The null hypothesis was further divided into three parts
for the factors strongly related to channel roughness, that is, S, R, and v.
The first part (Hy;,) stated that the measured S did not contribute any
information related to the actual n. In the second (Hy ;) and third (H )
parts, the statements were that the observed R and v, respectively, did not
bring information related to the actual n. An F-test was performed to
analyze the variance in populations for all parts of the hypothesis. In all
cases, the alternative hypotheses were proven true with the statement that
the variances were significantly different (true ratio of variances is not
equal to 1).

To test the significance of time-dependent variation in n, a null hypothesis
was formulated (H,) stating that the ML models could obtain high perfor-
mance in predicting the calculated # if the v and Q were matched at a site (in
other words, variations in measurements of R at a site did not matter). R” was
separately calculated using the RF-generated n (R,%/F3 ) and median n (R%S).
The differences between the original time-dependent R” and the measured

R” (R%? and R%3), were calculated:
A\R* = R* — R, (5)

AR* = R* - R%, (6)

n.

2.7. Quantifying the Implications of the Time Variability of n

How far off can velocity estimation be if we do not consider n's temporal variability? To answer this question, we
compared the estimated flow velocities using the time-dependent RF model and a static RF model trained on the

mean conditions (333 sites with >40 surveys; hydraulic radius taken from observations). We trained a temporally-

static model with the mean measured discharge from each site (Q) along with other covariates (x) of the site as

inputs, to calculate n values, defined as n,

rr(0x)
Q

at each site. Taking the n from this model as the static value for

the site and using observed hydraulic radius (depth), we then made velocity predictions using the Manning's

formula (Equation 1) at high flows, v<nQ R

these velocities based on n values estimated from a time-dependent RF model: v(n

RF(Q',x)

V(nminQ

each site:

rF(Q, RF(Q,
(g x) R,,WQ) and at low flows, v<nQ (2 x), R,,,,—,,Q) . We also computed

RF(Q',x)
maxQ

s Ruwp) and

, minQ) . Then the ratio between the two velocities was computed separately for high and low flows for
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%nﬁi%“ﬁ naxQ) D

v(ng(gax), Foa)

T maxQ —

RF(Q',x)
_ v(nminQ * ’ Rme) (8)

Tonin0 =
o= (e)
V ng B RminQ

We summarized these two metrics for 333 sites using histograms to aid in interpretation (Figure S3 in Supporting
Information S1). Values deviating significantly from 1.0 would suggest that the static model is not suitable for use
under extreme conditions.

We also sought a different velocity comparison metric without the use of ML models. To this end, we used the
data under min-Q conditions to calculate n,,,,, and then applied this value to max-Q conditions to estimate v
(Myings Rinaxo) using Manning's formula. Then we compared it to the observed max-Q velocity and computed a
ratio:

TR ©)
V(nminQ’ RmaxQ)

r’ values consistently larger than 1.0 would mean that the n derived from min-Q conditions is not applicable to
max-Q conditions.

Furthermore, we computed ' under both rectangular (default) and trapezoidal (which also can represent trian-
gular shape if bottom width = 0) channel assumptions. For the trapezoidal shape,

_ (wo +wy) D,

A
¢ 2

(10)

where w, is the bottom width, w; is the top width, and D, is the height of the trapezoid. As HYDRoSWOT
provides A, maximum depth D, and top width w,, we can get

2A,
Wy = max(F — Wy, 0) (11)
and
2A
=——< _ (12)
" (wo+wy)

for each transect survey. The wetted perimeter P for that survey is

P =wy + 24/ D2 + (w, — wy)*/4 (13)

Then, the hydraulic radius can be derived as
R=A./P (14)

As mentioned earlier, we deemed the width measurements to be less reliable than those of depth, and thus mainly
used the rectangular assumption. The purpose of this exercise here was to quantify the impacts of different
channel geometric assumptions on 7’ and probe whether our conclusion about n's temporal variability remained
robust despite some likely errors in width.

We further used a Muskingum-Cunge (MC) routing model (Bindas et al., 2024) to demonstrate the potential
impact of using static n values obtained under mean-Q conditions compared to using those from max-Q
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conditions. This experiment quantified the error if measured n values under mean flow conditions were used to
simulate flood propagation under a flooding scenario. The MC routing method is a simplified and widely
employed routing scheme that considers both mass and momentum conservation, while assuming a simplistic
prismatic floodwave shape. We chose the Juniata River basin in central Pennsylvania, USA, with a size of around
5,000 km?, because this size of a basin could reflect the impact of the riverine flow process. The river network was
constructed using the NHDPIus V2 geospatial dataset while the runoff was obtained using a trained deep-learning
rainfall-runoff model. The full model setup has been described by Bindas et al. (2024). The n values were obtained
from several ADCP sites inside the basin which were simplified into a simple threshold-based assignment of
values. Essentially, reaches with a drainage area size of less than 427.26 km?> were assigned one value, those
between 427.26 and 754.50 km? were assigned another value, and those below 5,273.62 km?® were assigned a third
value. These values were different for min-Q, mean-Q, and max-Q conditions, and are tabulated in Table S2 in
Supporting Information S1. While the impact of n values will depend on the size and hydrology of the basin and
channel characteristics, this case here merely serves as a qualitative demonstration of the potential pitfalls of the
traditional static view of Manning's n.

3. Results
3.1. Testing the Physical Significance of the Calculated n

Because it is difficult to establish “ground truth” values given alternative n estimates, we started our exercise by
examining whether the calculated n values have physical significance and truly represent Manning's roughness.
First, if they do, n should vary with environmental covariates (x) in a way that is at least partially consistent with
our a priori intuition. We found this to be true with available covariates including catchment area, land cover,
channel sinuosity, and so on, and evidence is to be shown in the Impacts of Control Factors section below.
Second, because that random signal is not predictable by x, the predictability of the calculated n can only be
higher than the sum of its parts if the combination is physically meaningful. If the combination is meaningful, data
for each factor of velocity (v), hydraulic radius (R), and channel slope (S) brings unique information about the
geomorphological coevolution of the components of 7.

In our “sum-larger-than-parts” tests (see Methods), we found that the calculated n values were more predictable as
a function of environmental covariates (x) than the different components of the formula. In other words, the
quantity n must be composed of data from one site, at the same time, in the form of the Manning's equation
(Equation 1 in Methods) for it to be the most predictable. Every time one of the variables in v, R, or S was replaced
by either this variable's global mean value or its at-a-site mean (or median) value, the predictability of the
resulting n declined significantly (Table 2). The model's performance, measured as the Nash-Sutcliffe model
efficiency coefficient (NSE), was even lower when we replaced two variables (instead of one of them at a time)
with their mean values. We also ran a control experiment where n had a similar composition but used v instead of
1/v in the formula (Table 2), which resulted in very low predictive power. Based on the earlier argument,
Manning's equation produced a quantity with higher physical relevance to the environment than the sum of its
parts. In all cases, we rejected the null hypotheses that the calculated n was predictable only because some parts of
the n calculation were correlated with the predictors (details in Supporting Information S1) and concluded that the
calculated n was physically significant.

Hypothesis tests were conducted to examine the relevance of measurements used in estimating n, designated as
(Hp,1). This hypothesis was partitioned into Hy ;,, Hg 11,, and Hy ., each postulating the irrelevance of S, R, and v,
respectively. F-tests were applied to check variances related to these components. The ratios of the variances were
found to be 1.15 for S, 0.23 for R, and 0.02 for v, with all the p-values being approximately zero. The NSE values
from the RF models with randomized S, R, and v values were, respectively, 0.29, —18.20, and —0.38, which shows
that the estimative power of the ML model degrades significantly with the random shuffling of the S, R, and v
values, and thus n was physically linked to those parameters. Therefore, the hypothesis testing proved that the
channel roughness r is a physically significant parameter.

This study investigated the impact of time on variation in n by testing another null hypothesis (H, ,) which posited
that ML model accuracy in predicting n was unaffected by time-related changes in R measurements. This was
examined by comparing the original R* against calculated values using RF-derived and median n, leading to the
formation of two differentials, A,R” and A,R”. A two-population F-test on the residuals A ,Rz/“ and Asz/“ was
performed to determine any variation in significance. The alternate hypothesis was proven true with the statement
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Figure 1. Maps of Manning's n values at (a) median of Q, and (b) maximum of Q at individual sites; (c) standard deviation of
n at each site; and (d) the difference between the n values at mean of Q (mean-Q) and maximum of Q (max-Q) at each site. Q
is the volumetric streamflow rate (m>/s).

that the variances were significantly different (true ratio of variances is not equal to 1). The ratios of the variances
were found to be 4.83 with all p-values being approximately zero.

3.2. Spatial Distributions of Manning's r

The spatial distribution of the calculated n shows no major large-scale gradients for either median- or max-
discharge (Q) conditions (Figures 1a and 1b), though several regional patterns (both expected and surprising)
stand out. While the pattern of » had been demonstrated previously (Heldmyer et al., 2022), the variability metrics
(Figures 1b—1d) have not previously been presented. Generally, low n values are quite prominent over the Great
Plains (especially along the major river corridors) and in the Appalachian Plateau (see Figure S2 in Supporting
Information S1 for a map of the physiographic provinces of the conterminous USA). High n values are more
common along the west coast and parts of the northeastern Appalachian Mountains. While these patterns fit the
general description of higher » in mountainous streams, we found a substantial concentration of high n values for
streams on the Coastal Plains, especially Florida and southern/coastal Texas. The high n values for these streams
could potentially be attributed to backwater flows, pervasive wetlands, and high sinuosity. In addition, there were
no clusters of high-n values along the Rocky Mountains, although this could be associated with conditions that do
not align with the assumptions of Manning's equation. These patterns counter the general expectation of high
values for mountainous regions and low values for flatter regions. Hence, this dataset shows that there may be no
geographically simple laws to describe the distribution of n. Similarly, on this scale, there are no clear patterns for
the at-a-site temporal standard deviation of n (std), other than that std tends to be higher where 7 is also high.
However, the noise in n values could partially be due to non-uniform flow conditions (like in coastal zones and
reservoirs) for which Manning's equation (with its assumption of uniform flow) does not apply.

The values of 7 in this dataset are around 0.02—0.05 for the larger rivers and can be as high as 0.33 for some sites.
For most of the sites, the n values at mean-Q are larger than the n values at max-Q by ~0.02, but there are also
exceptions. These values are on the same order of magnitude as those traditionally reported in the literature. While
these results and the small-spatial-scale variability of n are not surprising, this is nonetheless a valuable
confirmation that enables us to directly appreciate its spatial distribution.
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Figure 2. Impact of the spatiotemporal variability of discharge through (a) Random Forest (RF) model performance with the
observed discharge as an input, RF(Q’, x), with Nash-Sutcliffe Efficiency (NSE) of 0.71 (R2 = 0.7, RMSE = 0.037) and
(b) RF(x) model to predict n at maximum discharge at individual sites, with NSE of 0.63. (c) Spatiotemporal variance
partitioning of n, C in Chezy's formula and Y, in Keulegan's form for the entire, training, and testing portions of the dataset
using the predictability (%) of the trained RF model. Chezy and Keulegan formulations are described in Equations S1-S3.

3.3. Significance of the Temporal Variability of n

Variance decomposition (detailed in Methods) reveals that the predictable time variability explains at least ~35%
of the variance of n, in comparison to 50% explained by the spatial variability for all the data points (Figure 2c¢),
which challenges the standard assumption that 7 is not temporally-variable. The 50% figure comes from the
reduction of sum-of-squares of using at-a-site mean n (7*) as the prediction (SSEg) to compute a fraction of the
whole variance of n: 1 - SSE¢/SSE | = 50%. The 35% figure comes from the further reduction in sum-of-squares of
residuals of the RF(Q’, x) model (SSEgy) compared against SSEg: (SSEg - SSEgp)/SSE1 = 35%. (The notation RF
() represents an RF model trained with certain inputs, for example, RF(Q’, x) uses time-dependent discharge Q'
and temporally-static attributes x to predict the calculated n). The remaining 15% of the variance (SSEgg/
SSE} = 15%) includes unpredictable fluctuations and measurement/calculation noise. Both the training and the
testing data suggest a large fraction of variance can be explained by time-dependent discharge (Figure 2).

These fractions of explained variances are somewhat different between the training and testing data, as the RF
model inherently performs better for the training data. In our discussion, we quote the 35% figure from all the data
points as the overall summary, because the test metric may underestimate the time variability: (a) we may obtain
better models, as it is possible that other time-dependent variables also influence n but are not captured by this
model; and (b) the RF model cannot fully predict the spatial variance either. Thus, internal to the RF models, the
ratio of the temporal to the spatial variance was larger than 31%:51%.
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We also calculated alternative formulations of roughness coefficients, including Chezy's C and Y, from the
Keulegan equation (Text S1 and Equations S1-S3 in Supporting Information S1). The RF model performance
with C obtained an NSE of 0.74 (R*> = 0.74, RMSE = 11.40), and with Y, obtained an NSE of 0.68 (R*=0.68,
RMSE = 2.63). The model performed similarly for all roughness coefficients, with a slightly lower NSE of 0.68
with Y,. The models with C and Y, also showed outcomes similar to those obtained with n in terms of variance
decomposition. For the entire dataset, the spatial variance accounted for by C was 55% and Y, was 47%, compared
to 50% when using n. The temporal variance remained consistent at 35% for both n and Y,, whereas it slightly
decreased to 31% for C. This result suggests that the Chezy and Keulegan formulations did not offer better
resolution of temporal dynamics than n. Our interpretation is that the temporal variation in flow resistance pa-
rameters is not entirely due to hydraulic reasons (different flow depths and wetted perimeter), but also depends on
changes in channel geometry and channel bed materials. We thus subsequently only focused on 7.

To corroborate the importance of temporal variability, we ran hypothesis tests. where (a) we replaced time-
dependent discharge (Q") in the inputs of RF(Q’, x) with at-a-site-mean discharge (Q,) to get a new model RF
(Q,, x), which only obtained an NSE of 0.38; and (b) following the predictability argument cited described earlier,
we replaced either R or v in the n calculation with its at-a-site-mean values, and the resulting RF models obtained
respective NSE values of 0.08 and 0.21 (Table 2). Using at-a-site median values resulted in even lower pre-
dictability in both tests (a) (b). These tests suggest the time dependence of n is strong and the various components
of n must be combined not only at the same site but also from the same time point for the calculation to be the most
meaningful. In all cases, the null hypotheses that time-dependence did not matter were always rejected (details in
the Methods and Supporting Information S1). We provide even more velocity-based evidence in the “Discussion”
section below.

To offer direct intuition of the time dependence, we visualized how n varies at several sites as a function of
discharge and how the RF model captured some of the variation, which showed a diverse range of patterns
(Figure 3). At some sites, n declined gradually as discharge increased, either linearly (Figure 3a) or nonlinearly
(Figure 3b), and the variation was either well captured by the model (Figures 3a and 3b) or not so well captured
(Figure 3e). These figures are consistent with results presented in some earlier work (Ferguson, 2010). However,
at some other sites, the n fluctuations at the site were nearly random and uncorrelated with discharge (Figure 3c).
At many other sites, n showed a large variability in the low-Q range and trended toward small n values in the high-
Q range (e.g., Figures 3d and 3f): therefore the model had to go through the middle of the points. It should be
noted that this dataset focuses on the in-channel roughness rather than that of the floodplains. We frequently found
all these variations, which were difficult to summarize cleanly. The temporal dependence of discharge seemed to
be conditional on other variables, a dependence which the RF model only partially grasped; for example, contrast
the declining patterns in Figures 3b and 3d. Different types of variations may be grouped into a few common
classes but make identification challenging, and is beyond the scope of this research. The RF model's outputs do
not always co-vary smoothly with Q, but the oscillations are generally mild and could be suppressed in the future
using monotonicity constraints.

When aggregated by flow percentiles, both the mean value and the variability of # in a flow percentile band were
larger for low flow conditions compared to high flows (Figures 4a and 4b). Thus, we may predict » under the peak
conditions relatively well. Indeed, a RF model, RF(Q; ., x), that was given at-a-site maximum discharge (Q;,,.)
obtained an NSE of 0.63, which was higher than the models for n under mean flow conditions (NSE = 0.36). The
larger variability during low flows might be attributed to inherently larger measurement errors as the ADCP
sensor used to obtain these data points can only measure a portion of the flow, and a relatively larger portion of the
flow would need to be estimated when flow rate is low. Moreover, the bathymetry, flow paths, seasonal vege-
tation, and human-dependent decisions can vary over several years, which is especially noticeably for low-flow
conditions.

3.4. Impact of Control Factors

In our factorial analysis (Permutation Feature Importance, or PFI), discharge was found to have the highest
relative importance in estimating Manning's n compared to the other input features, followed by drainage area,
land cover factors (e.g., forest cover and agriculture), sinuosity, bed particle size, and so on (Figure 5). The
predominant difference between this result and those in the literature is that here, discharge and drainage area are
the two most important roles, while they are not explicitly invoked in traditional engineering handbooks, for
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Figure 3. RF model performance in predicting temporally-varying » at various sites (a—f) labeled with their USGS monitoring
location numbers. Red triangles show the calculated n and blue ones show RF-predicted n.

example, Water Resources Engineering (third edition) by Larry W. Mays (2019). Based on the variance
decomposition analysis, the importance of QO comes from both spatial (variation amongst sites) and temporal
(variation among measurements taken at the same site over time) influences. The drainage area could have served
as a proxy for stream order (“minor” vs. “major” rivers as described in handbooks (Knighton, 1989) or width and
depth, which are not easily obtainable from available datasets. As an integrative and more accessible indicator, the
importance of catchment area and discharge may mean that there is a pathway toward large-scale prediction of n
to support flood modeling. The relatively high importance of land cover attributes is partially consistent with the
literature, as land cover types are a central defining theme when looking at Manning's n lookup tables. However,
they are important in the lookup tables only for the floodplains, but here we extracted land cover from a 30-m
neighborhood from each site while the n dataset likely focused on the in-channel roughness only. The fact that
these attributes have reasonably high PFI scores suggests a channel's surrounding land cover may influence (or at
least co-vary with) the morphology of the streams. Forests not only evolve with the landscape, but have important
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Figure 4. Manning's n (a) mean and (b) coefficient of variation (CoV) at all sites for 10 discharge bands (flow percentiles).
One set of mean and CoV values was calculated for each site and each flow band, and then those values from different sites
were summarized into the boxplots. The horizontal line in each box represents the median, the bottom and top of the box
respectively represent the first and third quantiles, and the whiskers extend to 1.5 times the interquartile range from the first
and third quantiles.

feedback to the development of the landscape. Except for the streambed mean grain size, Figure 5 shows that the
soil attributes are not of great importance. However, this is likely because the data express the soil attributes in a
neighborhood, which may have little to do with the streambed materials in nearby streams, or perhaps cannot
describe the soil's ability to facilitate bedforms in a manner that impacts flow resistance. Unfortunately, there is no
large-scale dataset on bedforms.
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Figure 5. (a) Rank of influencing factors for Manning's n according to their feature importance. Here, “Al” stands for aridity
index. (b)—(g) Sensitivity of n with respect to different external factors with partial dependence response curves. Due to the
nature of these curves, the absolute value of the y-axis is not very meaningful; the range of the y-axis and the shape of the
curve are what to focus on. NDVI is Normalized Difference Vegetation Index, which is correlated with vegetation coverage.

While the partial-dependence plots (Figures Sb—5g, essentially an integration of the marginal influence of a single
factor) show sensitivities that generally agree with our intuition, it is nonetheless interesting to study these re-
lationships obtained from such a large dataset. The n ~ Q relationship is exhibited by an exponential-decay curve.
Drainage area (DA) acts in a similar manner, but separately from Q. Overall, they point to much larger n values for
the smaller streams. Higher forest percentage in the neighborhood leads to higher » while agriculture reduces n,
but both have a smaller magnitude (0.1-0.11) of influence than either Q or DA. It is well understood that forest
cover increases resistance while agricultural land tends to be associated with cleared channel surroundings and
straightened channels. Average NDVI (Normalized Difference Vegetation Index), which is correlated with
vegetation coverage, is positively correlated with roughness, but can only change n by a small magnitude (0.098—
0.106). Sinuosity has a similar impact, and the more sinuous stream tends to have mildly higher n, perhaps due to
the impeding effects of meandering and added roughness of deposited materials in the channels.

AL MEHEDI ET AL.

14 of 19



V od |
AGU

ADVANCING EARTH
AND SPACE SCIENCES

Earth's Future 10.1029/2023EF004257

- = s
200 160 /‘

_.150 . 140 7 —

w 'd

" S

E £

5 < 120

2100 2

] S

a2 £100

=) a

50
%0
0 60 b
) o S > N ) o A ® o o N
S S s N ; N N . N A A A A 2 7
o & QQ N o o o ISR AN AR AR AR ARSI C AR
L), o) QP 2 L)) 00‘\ 00\’ 00\, BQX QQ\' 00‘\ 0‘)\, 00‘\, 0@&
Time Stamp ) o % 2 7 % 2 ) 2
Time Stamp
280
200
Legends
180 \/ — nat Qmean
BN | W n at Qmax
) n at Qmin

¢ Peak discharge with n at Qmean
¢ Peak discharge with n at Qmax
¢ Peak discharge with n at Qmin

Discharge (m3/s)
=
(=2}
o

=
S
o

120 &

h(e
5 o A ® &) N N 0 >
& ¢ 0“',L N
4 Y 0’\' 0’\,’ Q\,’ 0’\’ Q’\/’ 0’\,’ 0’\'
AT T ART g ®T FT PT FT  d

Time Stamp

Figure 6. Impact of n values on a standard streamflow routing model (Muskingum-Cunge) in a ~5,000 km? watershed in
Pennsylvania, USA. (a) Discharge hydrographs for the basin using n values at O, .,n» Qmax: a0d Qi (b) and (c) Close-up
views of flow peaks in the hydrographs. Note the differences in both magnitude and time between the predicted peaks
depending on which n value was used.

3.5. Implications

The observed n's temporal variability (both mean values and coefficients of variation (CoV) are smaller for high
flows) has multifaceted implications regarding how we should measure, estimate, and use n values. First, sig-
nificant errors could be introduced to large-scale flood and aquatic ecosystem modeling if temporal variability is
not considered and if sampling is done at unrepresentative flow conditions. For measured max-Q conditions, the
time-dynamic model would produce velocities that are, for the median of 333 sites, 45% higher than the static RF
model's results (Figure S3 in Supporting Information S1; details in Methods). Setting aside any machine learning
models, the observed max-Q velocity is, at the median, 125% larger than what would be estimated if we applied
Manning's formula with n from min-Q measurements (1’ = 225%; Figure S4 in Supporting Information S1, details
in Methods). Furthermore, it is 135% greater assuming a trapezoidal channel shape instead of rectangular. In
contrast, for low flows, the time-dynamic model leads to velocities that are, at the median, 45% lower than the
static model's results. Not accounting for the discharge dependence of n, trout habitat modeling efforts, for
example, could heavily overestimate the flow velocity.

Errors stemming from the traditional static n could have significant effects on the accuracy of flood modeling.
This is demonstrated in a case study for a ~5,000 km? watershed in Pennsylvania, USA, where we ran a standard
streamflow routing model (Muskingum-Cunge, Figure 6a). The model simulates how the flood wave propagates
from upstream to downstream given runoff and river network information. The differences in the flood wave
propagations were compared using different sets of n values, obtained under minimum flow, mean flow, and
maximum flow conditions (details in Methods). The flood peak using mean-Q n values lags the one with max-Q n
values by 23 hr for one of the storm events (Figure 6b), and 36 hr for another larger peak (Figure 6¢). This error
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could mean that if we used mean-Q in our model, we could have issued a warning for a flood that would be more
than a day later than the actual one, and could make the difference between life and death in a real-world situation.
Additionally, given n's discharge dependence, the larger the actual peak is, the smaller the max-Q n would be, and
the bigger the difference we would see in the timing of the peaks. This dynamic effect also means that even if we
calibrated n based on an observed streamflow peak, the calibrated value would not be guaranteed to perform well
for other extreme scenarios. Furthermore, since the max-Q n values were much smaller, they led to a smaller gap
between two adjacent flood peaks in Figure 6¢, and, because of flood wave superposition, a ~15% higher peak
than was simulated using the mean-Q n. This demonstrates that the traditional static approach would produce
errors in both flood timing and magnitude, which would not be fixed using a traditional calibration approach with
static n values. Similarly, a static model could grossly underestimate pollutant transport speed (thus pollutants
could arrive at beaches much earlier than forecasted, resulting in human sickness), or miscalculate impacts on
infrastructure and ecosystems.

While the MC routing model was utilized for simulating channel flow, its reliance on kinematic-wave flow
routing does incur some limitations. Specifically, the MC model's exclusion of slope dynamics overlooks the
feedback loop between channel roughness and flow velocity, where increased roughness leads to reduced velocity
and higher water levels. Unlike models that adjust for water surface slope, such as diffusion or dynamic wave
models, the MC model's kinematic approach could potentially overestimate the impacts of roughness errors on
flow simulations.

3.6. Conclusion

While smaller n values were presented in limited studies in the past, the more predictable n values (within the
channel) under high-flow regimes have not been discussed. Decreasing n with higher flow conditions could be
explained by a smaller ratio of wetted perimeter to cross-sectional area at high flows, resulting in a weakening
viscous effect of riverbed and banks. To account for such dynamic effects, we can either set n to be dynamic,
revise Manning's equation to reflect such temporal dependencies, or use a different roughness parameter (though
both Chezy's C and Keulegan's Y, coefficients showed similar results to n). However, judging by the diverse
patterns and large errors toward lower discharge, discussed above, it is unlikely that any simple modification to
the equation could yield a robust universal model. Therefore, setting n as being dynamic may be a more viable
approach for the near future.

Traditional lookup tables of Manning's roughness coefficients focus on local characteristics related to channel bed
materials and geomorphology, whereas our study suggests that more attention needs to be paid to basin-scale
variables like discharge, catchment area, and sinuosity, which provide integral signals of upstream basin char-
acteristics and are also easier to obtain at large scales. Thus, capable machine learning models (here, NSE>0.7
constitutes a successful model) that utilize widely available geospatial datasets as inputs could arise. It is possible
we can refine such future models to be widely applicable at large scales for various applications. Looking for-
wards, we think there are a variety of possible methods to incorporate the model here into hydraulic models.
Long-term Q at different percentiles can be used to update » on a daily or monthly time scale. While this system
combining Q and n can be solved simultaneously, the impact may not justify the complexity. It is more likely that
we will use a neural network instead of a random forest to support differentiable modeling®®, which can seam-
lessly connect neural networks to hydraulic models. Then, operator splitting can be employed to calculate n using
Q from the last time step, and this n can be used to calculate Q for the present time step.

In this work, we viewed Manning's n as a function of macroscopic environmental variables, while geo-
morphologists have previously focused on studying it as a physical parameter controlled by grain size, sinuosity,
bedload, and so on. Here with the largest dataset and thousands of sites, the time dependency of n and its relevance
to the environment are hopefully proven beyond reasonable doubt. The work presented here has revealed a
fundamental misconceptualization of river bed roughness, which is of intrinsic interest to water resources en-
gineers and modelers as well as biologists and other scientists studying aquatic ecosystems. Our results show that
errors stemming from the traditional temporally-static n could have significant effects on modeling accuracy.
Such errors could mean that a flood could arrive a day or more earlier than the forecasted one, with a larger-than-
anticipated magnitude, causing otherwise avoidable damages or casualties. It could also mean we underestimate
the impacts of floods on bridges, dams, and bank/road erosion, provide mis-timed warnings of river pollutant
arrivals to beaches, or miscalculate the available fish habitat after certain perturbations to the hydraulics of ariver.
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